This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories I-epsilon[u] = integral(infinity)(0) e(-t/epsilon) (1/2 vertical bar u'vertical bar(2)(t) + 1/epsilon phi(u(t))) dt, featuring the weighted sum of energetic and dissipative terms. As the parameter epsilon is sent to 0, the minimizers u(epsilon) of such functionals converge, up to subsequences, to curves of maximal slope driven by the functional phi. This delivers a new and general variational approximation procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a novel perspective towards relaxation. (C) 2018 Elsevier Masson SAS. All rights reserved.

Weighted Energy-Dissipation principle for gradient flows in metric spaces

R Rossi;A Segatti;U Stefanelli
2019

Abstract

This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories I-epsilon[u] = integral(infinity)(0) e(-t/epsilon) (1/2 vertical bar u'vertical bar(2)(t) + 1/epsilon phi(u(t))) dt, featuring the weighted sum of energetic and dissipative terms. As the parameter epsilon is sent to 0, the minimizers u(epsilon) of such functionals converge, up to subsequences, to curves of maximal slope driven by the functional phi. This delivers a new and general variational approximation procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a novel perspective towards relaxation. (C) 2018 Elsevier Masson SAS. All rights reserved.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Gradient flow; Metric space; Curve of maximal slope; Weighted Energy-Dissipation functionals; Variational principle; Hamilton-Jacobi equation
File in questo prodotto:
File Dimensione Formato  
prod_407037-doc_152480.pdf

accesso aperto

Descrizione: Weighted Energy-Dissipation principle for gradient flows in metric spaces
Tipologia: Versione Editoriale (PDF)
Dimensione 725.38 kB
Formato Adobe PDF
725.38 kB Adobe PDF Visualizza/Apri
prod_407037-doc_152481.pdf

non disponibili

Descrizione: Weighted Energy-Dissipation principle for gradient flows in metric spaces
Tipologia: Versione Editoriale (PDF)
Dimensione 881.07 kB
Formato Adobe PDF
881.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact