Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3) has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides) has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFR? (Gint4.T), here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3) to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFR?+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma

Esposito CL;Nuzzo S;Catuogno S;de Franciscis V
2018

Abstract

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3) has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides) has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFR? (Gint4.T), here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3) to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFR?+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.
2018
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
STAT3; aptamer; glioblastoma; siRNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 96
  • ???jsp.display-item.citation.isi??? 87
social impact