The large use of portable devices imposes a new interest in the development of power backup systems with constraints in terms of compactness and safety. Such systems have to match the use as battery backups as well as a self-standing operating. Thermoelectric generators (TEGs) allow access to new ways of power supply thanks to their long lifetimes, their competitive efficiencies at low powers and their capability of providing multiple outputs. In this work, a TEG based on catalytic combustor has been proposed aiming to approach electrical output and dimension of the commonly used AA batteries. Catalytic combustion provides the possibility to profit from the high power densities of hydrocarbon in limited space and low burning temperatures meeting the needs of the TEGs as a heat engine. The system has been characterized for different fuel flow rates. The measured TEG efficiency is 3.4% with the electrical power output of 5.3 W. The system thermal behavior has been experimentally investigated according to literature models, by evaluating the effectiveness of the design and of the chosen practical solutions. The system produced reached the electrical output target, matching the characteristics proper of most of the common commercial AA batteries in a similar device volume.

Small size thermoelectric power supply for battery backup

Abedi H.
;
Migliorini F.;Donde' R.;De Iuliis S.;Passaretti F.;Fanciulli C.
2019

Abstract

The large use of portable devices imposes a new interest in the development of power backup systems with constraints in terms of compactness and safety. Such systems have to match the use as battery backups as well as a self-standing operating. Thermoelectric generators (TEGs) allow access to new ways of power supply thanks to their long lifetimes, their competitive efficiencies at low powers and their capability of providing multiple outputs. In this work, a TEG based on catalytic combustor has been proposed aiming to approach electrical output and dimension of the commonly used AA batteries. Catalytic combustion provides the possibility to profit from the high power densities of hydrocarbon in limited space and low burning temperatures meeting the needs of the TEGs as a heat engine. The system has been characterized for different fuel flow rates. The measured TEG efficiency is 3.4% with the electrical power output of 5.3 W. The system thermal behavior has been experimentally investigated according to literature models, by evaluating the effectiveness of the design and of the chosen practical solutions. The system produced reached the electrical output target, matching the characteristics proper of most of the common commercial AA batteries in a similar device volume.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Milano
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Lecco
Thermoelectric generator
Thermoelectric applications
Catalytic combustor
Battery charger
Battery backup
Thermoelectric device characterization
File in questo prodotto:
File Dimensione Formato  
prod_409073-doc_147737.pdf

solo utenti autorizzati

Descrizione: Small size thermoelectric power supply for battery backup
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact