A fundamental problem in the processing of image sequences is the computation of the velocity field of the apparent motion of brightness patterns usually referred to optical flow. In this paper a novel optical flow estimator based on a bivariate quasi-interpolant operator is presented. Namely, a non linear minimizing technique has been employed to compute the velocity vectors by modeling the flow field with a 2D quasi-interpolant operator based on centered cardinal B-spline functions. In this way an efficient computational scheme for optical flow estimate is provided. In addition the large solving linear systems involved in the process are sparse. Experiments on several image sequences have been carried out in order to investigate the performance of the optical flow estimator.
An Algorithm for Optical Flow Computation Based on a Quasi-Interpolant Operator
Lodato Carmelo;Lopes Salvatore;
2006
Abstract
A fundamental problem in the processing of image sequences is the computation of the velocity field of the apparent motion of brightness patterns usually referred to optical flow. In this paper a novel optical flow estimator based on a bivariate quasi-interpolant operator is presented. Namely, a non linear minimizing technique has been employed to compute the velocity vectors by modeling the flow field with a 2D quasi-interpolant operator based on centered cardinal B-spline functions. In this way an efficient computational scheme for optical flow estimate is provided. In addition the large solving linear systems involved in the process are sparse. Experiments on several image sequences have been carried out in order to investigate the performance of the optical flow estimator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.