We propose to use the recently introduced orbital angular momentum spectrometer in a transmission electron microscope to perform electron magnetic chiral dichroism experiments, dispersing the inelastically scattered electrons from a magnetic material in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution.
Orbital angular momentum resolved electron magnetic chiral dichroism
Rotunno E;Zanfrognini M;Frabboni S;Grillo V
2019
Abstract
We propose to use the recently introduced orbital angular momentum spectrometer in a transmission electron microscope to perform electron magnetic chiral dichroism experiments, dispersing the inelastically scattered electrons from a magnetic material in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.