Frictional granular matter is shown to be fundamentally different in its plastic responses to external strains from generic glasses and amorphous solids without friction. While regular glasses exhibit plastic instabilities due to the vanishing of a real eigenvalue of the Hessian matrix, frictional granular materials can exhibit a previously unnoticed additional mechanism for instabilities, i.e., the appearance of a pair of complex eigenvalues leading to oscillatory exponential growth of perturbations that are tamed by dynamical nonlinearities. This fundamental difference appears crucial for the understanding of plasticity and failure in frictional granular materials. The possible relevance to earthquake physics is discussed.
Oscillatory Instabilities in Frictional Granular Matter
Pica Ciamarra M;
2019
Abstract
Frictional granular matter is shown to be fundamentally different in its plastic responses to external strains from generic glasses and amorphous solids without friction. While regular glasses exhibit plastic instabilities due to the vanishing of a real eigenvalue of the Hessian matrix, frictional granular materials can exhibit a previously unnoticed additional mechanism for instabilities, i.e., the appearance of a pair of complex eigenvalues leading to oscillatory exponential growth of perturbations that are tamed by dynamical nonlinearities. This fundamental difference appears crucial for the understanding of plasticity and failure in frictional granular materials. The possible relevance to earthquake physics is discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.