The goal of nanomedicine is to transport drugs to pathological tissues, reducing side effects while increasing targeting and efficacy. Aggregates grafted by bioactive molecules act as the active targeting agents. Among bioactive molecules, peptides, which are able to recognize overexpressed receptors on cancer cell membranes, appear to be very promising. The aim of this study was to formulate analog peptide-labeled micelles enabled to potentially deliver highly hydrophobic drugs to cancer cells overexpressing epidermal growth factor (EGF) receptor (EGFR). The selected synthetic peptide sequences were anchored to a hydrophobic moiety, aiming to obtain amphiphilic peptide molecules. Mixed micelles were formulated with Pluronic F127. These micelles were fully characterized by physico-chemical methods, estimating the critical micellar concentration (CMC) by fluorescence. Their sizes were established by dynamic light scattering (DLS) analysis. Then, micelles were also tested in vitro for their binding capacity to human hepatocellular carcinoma (HCC) cell lines overexpressing EGFR.

Synthetic peptide-labelled micelles for active targeting of cells overexpressing EGF receptors

Cusimano A;Emma MR;Cervello M
2019

Abstract

The goal of nanomedicine is to transport drugs to pathological tissues, reducing side effects while increasing targeting and efficacy. Aggregates grafted by bioactive molecules act as the active targeting agents. Among bioactive molecules, peptides, which are able to recognize overexpressed receptors on cancer cell membranes, appear to be very promising. The aim of this study was to formulate analog peptide-labeled micelles enabled to potentially deliver highly hydrophobic drugs to cancer cells overexpressing epidermal growth factor (EGF) receptor (EGFR). The selected synthetic peptide sequences were anchored to a hydrophobic moiety, aiming to obtain amphiphilic peptide molecules. Mixed micelles were formulated with Pluronic F127. These micelles were fully characterized by physico-chemical methods, estimating the critical micellar concentration (CMC) by fluorescence. Their sizes were established by dynamic light scattering (DLS) analysis. Then, micelles were also tested in vitro for their binding capacity to human hepatocellular carcinoma (HCC) cell lines overexpressing EGFR.
2019
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
peptide
drug delivery
hepatocellular carcinoma
EGFR
EGF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact