Measurements of alkylamines from seawater and atmospheric samples collected simultaneously across the Antarctic Peninsula, South Orkney and South Georgia Islands are reported. Concentrations of mono-, di-, and trimethylamine (MMA, DMA, and TMA, respectively), and their precursors, the quarternary amines glycine betaine and choline, were enhanced in sympagic seawater samples relative to ice-devoid pelagic ones, suggesting the microbiota of sea ice and sea ice-influenced ocean is a major source of these compounds. Primary sea-spray aerosol particles artificially generated by bubbling seawater samples were investigated by aerosol time-of-flight mass spectrometry (ATOFMS) of single particles; their mixing state indicated that alkylamines were aerosolized with sea spray from dissolved and particulate organic nitrogen pools. Despite this unequivocal sea spray-associated source of alkylamines, ATOFMS analyses of ambient aerosols in the sympagic region indicated that the majority (75-89%) of aerosol alkylamines were of secondary origin, that is, incorporated into the aerosol after gaseous air-sea exchange. These findings show that sympagic seawater properties are a source of alkylamines influencing the biogenic aerosol fluxed from the ocean into the boundary layer; these organic nitrogen compounds should be considered when assessing secondary aerosol formation processes in Antarctica. © 2019 American Chemical Society.
Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment
Rinaldi Matteo;Paglione Marco;Decesari Stefano;
2019
Abstract
Measurements of alkylamines from seawater and atmospheric samples collected simultaneously across the Antarctic Peninsula, South Orkney and South Georgia Islands are reported. Concentrations of mono-, di-, and trimethylamine (MMA, DMA, and TMA, respectively), and their precursors, the quarternary amines glycine betaine and choline, were enhanced in sympagic seawater samples relative to ice-devoid pelagic ones, suggesting the microbiota of sea ice and sea ice-influenced ocean is a major source of these compounds. Primary sea-spray aerosol particles artificially generated by bubbling seawater samples were investigated by aerosol time-of-flight mass spectrometry (ATOFMS) of single particles; their mixing state indicated that alkylamines were aerosolized with sea spray from dissolved and particulate organic nitrogen pools. Despite this unequivocal sea spray-associated source of alkylamines, ATOFMS analyses of ambient aerosols in the sympagic region indicated that the majority (75-89%) of aerosol alkylamines were of secondary origin, that is, incorporated into the aerosol after gaseous air-sea exchange. These findings show that sympagic seawater properties are a source of alkylamines influencing the biogenic aerosol fluxed from the ocean into the boundary layer; these organic nitrogen compounds should be considered when assessing secondary aerosol formation processes in Antarctica. © 2019 American Chemical Society.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_403254-doc_140338.pdf
solo utenti autorizzati
Descrizione: Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


