In multi-orbital materials, superconductivity can exhibit several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the band structure and selectively control the occupancy of 3d orbitals by electrostatic doping. Here, we use resonant microwave transport to extract the superfluid stiffness of the (110)-oriented LaAlO 3 /SrTiO 3 interface in the entire phase diagram. We provide evidence of a transition from single-condensate to two-condensate superconductivity driven by continuous and reversible electrostatic doping, which we relate to the Lifshitz transition between 3d bands based on numerical simulations of the quantum well. We find that the superconducting gap is suppressed while the second band is populated, challenging Bardeen-Cooper-Schrieffer theory. We ascribe this behaviour to the existence of superconducting order parameters with opposite signs in the two condensates due to repulsive coupling. Our findings offer an innovative perspective on the possibility to tune and control multiple-orbital physics in superconducting interfaces.

Gap suppression at a Lifshitz transition in a multi-condensate superconductor

L. Benfatto;S. Caprara;M. Grilli;
2019

Abstract

In multi-orbital materials, superconductivity can exhibit several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the band structure and selectively control the occupancy of 3d orbitals by electrostatic doping. Here, we use resonant microwave transport to extract the superfluid stiffness of the (110)-oriented LaAlO 3 /SrTiO 3 interface in the entire phase diagram. We provide evidence of a transition from single-condensate to two-condensate superconductivity driven by continuous and reversible electrostatic doping, which we relate to the Lifshitz transition between 3d bands based on numerical simulations of the quantum well. We find that the superconducting gap is suppressed while the second band is populated, challenging Bardeen-Cooper-Schrieffer theory. We ascribe this behaviour to the existence of superconducting order parameters with opposite signs in the two condensates due to repulsive coupling. Our findings offer an innovative perspective on the possibility to tune and control multiple-orbital physics in superconducting interfaces.
2019
Istituto dei Sistemi Complessi - ISC
Degrees of freedom (mechanics)
Semiconductor quantum wells
File in questo prodotto:
File Dimensione Formato  
prod_403255-doc_140339.pdf

solo utenti autorizzati

Descrizione: Gap suppression at a Lifshitz transition in a multi-condensate superconductor
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact