High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the eect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the eect of long term O3 exposure of mature O3-sensitive hybrid poplars ('Oxford' clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not aect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct eect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.

Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees

Giovannelli A;Traversi ML;Anichini M;Hoshika Y;Paoletti E
2019

Abstract

High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the eect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the eect of long term O3 exposure of mature O3-sensitive hybrid poplars ('Oxford' clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not aect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct eect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
2019
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
dendrometer; heat pulse; vessels; transpiration; sapwood
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact