Osteosarcoma (OS) is a rare, insidious tumor of mesenchymal origin that most often affects children, adolescents, and young adults. While the primary tumor can be controlled with chemotherapy and surgery, it is the lung metastases that are eventually fatal. Multiple studies into the initial drivers of OS development have been undertaken, but few of these have examined innate immune/inflammatory signaling. A central figure in inflammatory signaling is the innate immune/stress-activated kinase double-stranded RNA-dependent protein kinase (PKR). To characterize the role of PKR in OS, U2OS, and SaOS-2 osteosarcoma cell lines were stably transfected with wild-type or dominant-negative (DN) PKR. Overexpression of PKR enhanced colony formation in soft agar (U2OS and SaOS-2), enhanced cellular migration (U2OS), and invasive migration (SaOS-2). In contrast, overexpression of DN-PKR inhibited attachment-independent growth, migration and/or invasion. These data demonstrate a role for inflammatory signaling in OS formation and migration/invasion and suggest the status of PKR expression/activation may have prognostic value.

Expression of the double-stranded RNA-dependent kinase PKR influences osteosarcoma attachment independent growth, migration, and invasion.

Piazzi M;
2020

Abstract

Osteosarcoma (OS) is a rare, insidious tumor of mesenchymal origin that most often affects children, adolescents, and young adults. While the primary tumor can be controlled with chemotherapy and surgery, it is the lung metastases that are eventually fatal. Multiple studies into the initial drivers of OS development have been undertaken, but few of these have examined innate immune/inflammatory signaling. A central figure in inflammatory signaling is the innate immune/stress-activated kinase double-stranded RNA-dependent protein kinase (PKR). To characterize the role of PKR in OS, U2OS, and SaOS-2 osteosarcoma cell lines were stably transfected with wild-type or dominant-negative (DN) PKR. Overexpression of PKR enhanced colony formation in soft agar (U2OS and SaOS-2), enhanced cellular migration (U2OS), and invasive migration (SaOS-2). In contrast, overexpression of DN-PKR inhibited attachment-independent growth, migration and/or invasion. These data demonstrate a role for inflammatory signaling in OS formation and migration/invasion and suggest the status of PKR expression/activation may have prognostic value.
2020
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
inflammation; innate immunity; metastases; osteosarcoma; signal transduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/366878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact