The sustainable exploitation of small pelagic fish populations, characterized by short life span and early age at first reproduction, is typically more influenced by the success of annual recruitment rather than by fishing mortality. Recruitment strength, in turn, is related to the high environmental variability characterizing the pelagic fish habitats, able to strongly affect the survival of early stages, from hatching to recruitment. Here, we consider the case study of anchovy (Engraulis encrasicolus) stock in the Strait of Sicily (Central Mediterranean). The interannual fluctuations exhibited over an 18-year long period by this fish population was found to be mainly linked to surface circulation patterns, as far as they are able to control retention/dispersal processes of larval stages. We firstly used Lagrangian simulations to reproduce the fate of anchovy early stages during their planktonic phase. Larval retention indices constructed from the output of the simulations were able alone to explain a large proportion of variance (up to 70%) in yearly biomass of the anchovy population, outclassing the other environmental factors considered in this study. Such results are relevant for fisheries management, for all fish stocks characterized by potentially high vulnerability of early life stages.

General surface circulation controls the interannual fluctuations of anchovy stock biomass in the Central Mediterranean Sea

Patti Bernardo
Primo
Writing – Original Draft Preparation
;
Torri Marco
;
Cuttitta Angela
2020

Abstract

The sustainable exploitation of small pelagic fish populations, characterized by short life span and early age at first reproduction, is typically more influenced by the success of annual recruitment rather than by fishing mortality. Recruitment strength, in turn, is related to the high environmental variability characterizing the pelagic fish habitats, able to strongly affect the survival of early stages, from hatching to recruitment. Here, we consider the case study of anchovy (Engraulis encrasicolus) stock in the Strait of Sicily (Central Mediterranean). The interannual fluctuations exhibited over an 18-year long period by this fish population was found to be mainly linked to surface circulation patterns, as far as they are able to control retention/dispersal processes of larval stages. We firstly used Lagrangian simulations to reproduce the fate of anchovy early stages during their planktonic phase. Larval retention indices constructed from the output of the simulations were able alone to explain a large proportion of variance (up to 70%) in yearly biomass of the anchovy population, outclassing the other environmental factors considered in this study. Such results are relevant for fisheries management, for all fish stocks characterized by potentially high vulnerability of early life stages.
2020
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino - IAS - Sede Secondaria Palermo
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino - IAS - Sede Secondaria Capo Granitola
Istituto di Studi sul Mediterraneo - ISMed - Sede Secondaria Palermo
Engraulis encrasicolus
surface circolation
ichthyoplankton
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/367565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact