In this work, a flat-sheet blend membrane was fabricated by a traditional phase inversion method, using the polymer blends poly phenyl sulfone (PPSU) and polyether sulfone (PES) for the ultrafiltration (UF) application. It was hypothesized that adding PES to the PPSU polymer blend would improve the properties of the PPSU membrane. The effect of the PES concentration on the blend membrane properties was investigated extensively. The characteristics of PPSU-PES blend membranes were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle measure, and contaminant (dye) elimination efficiency. This study showed that PES clearly affected the structural formation of the blended membranes. A considerable increase in the average roughness (about 93%) was observed with the addition of 4% PES, with a higher mean pore size accompanied by a rise in the pores' density on the surface of the membrane. The addition of up to 4% PES had a significant influence on the hydrophilic character of the PPSU-PES membrane, by lowering the value of the contact angle (CA) (i.e., to 56.9 ). The performance of the PPSU-PES composite membranes' UF performance was systematically investigated, and the membrane pure water permeability (PWP) was enhanced by 25% with the addition of 4% PES. The best separation removal factor achieved in the current investigation for dye (Drupel Black NT) was 96.62% for a PPSU-PES (16:4 wt./wt.%) membrane with a 50% feed dye concentration.

Removal of dye from a leather tanning factory by flat-sheet blend ultrafiltration (UF) membrane

A Figoli
2020

Abstract

In this work, a flat-sheet blend membrane was fabricated by a traditional phase inversion method, using the polymer blends poly phenyl sulfone (PPSU) and polyether sulfone (PES) for the ultrafiltration (UF) application. It was hypothesized that adding PES to the PPSU polymer blend would improve the properties of the PPSU membrane. The effect of the PES concentration on the blend membrane properties was investigated extensively. The characteristics of PPSU-PES blend membranes were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle measure, and contaminant (dye) elimination efficiency. This study showed that PES clearly affected the structural formation of the blended membranes. A considerable increase in the average roughness (about 93%) was observed with the addition of 4% PES, with a higher mean pore size accompanied by a rise in the pores' density on the surface of the membrane. The addition of up to 4% PES had a significant influence on the hydrophilic character of the PPSU-PES membrane, by lowering the value of the contact angle (CA) (i.e., to 56.9 ). The performance of the PPSU-PES composite membranes' UF performance was systematically investigated, and the membrane pure water permeability (PWP) was enhanced by 25% with the addition of 4% PES. The best separation removal factor achieved in the current investigation for dye (Drupel Black NT) was 96.62% for a PPSU-PES (16:4 wt./wt.%) membrane with a 50% feed dye concentration.
2020
Istituto per la Tecnologia delle Membrane - ITM
membrane
ultrafiltration
leather tanning factory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/367572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact