Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'gamma (PP2A-B'gamma) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-meth-oxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'gamma is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'gamma in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.
PP2A-B 'gamma modulates foliar trans-methylation capacity and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves
Trotta AndreaCo-primo
;
2017
Abstract
Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'gamma (PP2A-B'gamma) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-meth-oxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'gamma is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'gamma in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.File | Dimensione | Formato | |
---|---|---|---|
The Plant Journal - 2016 - Rahikainen - PP2A‐B modulates foliar trans‐methylation capacity and the formation of.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
782.17 kB
Formato
Adobe PDF
|
782.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.