In this paper, an adaptive method for copy-move forgery detection and localization in digital images is proposed. The method employs wavelet transform with non constant Q factor and characterizes image pixels through the multiscale behavior of corresponding wavelet coefficients. The detection of forged regions is then performed by considering similar those pixels having the same multiscale behavior. The method is pointwise and the length of pixel features vector is image dependent, allowing for a more precise and fast detection of forged regions. The qualitative and quantitative evaluation of the experimental results reveals that the proposed method outperforms some existing transform-based methods in terms of performance and execution time.
An Adaptive Copy-Move Forgery Detection Using Wavelet Coefficients Multiscale Decay
Bruni V;Ramella G;Vitulano D
2019
Abstract
In this paper, an adaptive method for copy-move forgery detection and localization in digital images is proposed. The method employs wavelet transform with non constant Q factor and characterizes image pixels through the multiscale behavior of corresponding wavelet coefficients. The detection of forged regions is then performed by considering similar those pixels having the same multiscale behavior. The method is pointwise and the length of pixel features vector is image dependent, allowing for a more precise and fast detection of forged regions. The qualitative and quantitative evaluation of the experimental results reveals that the proposed method outperforms some existing transform-based methods in terms of performance and execution time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.