Hydrogen is the simplest, oldest, and most widespread molecule in nature. Nevertheless, the vast majority of the hydrogen industrial production stems from steam reforming of methane performed at high temperatures or pressures. Albeit other chemical routes to the hydrogen synthesis, involving, for example, water electrolysis and novel photocatalysts, have recently been explored, no catalyst-free reaction pathways have been identified, seriously limiting the large-scale deployment of hydrogen. On the basis of state-of-the-art ab initio molecular dynamics simulations, here, we present a study revealing a novel synthesis route to hydrogen from neat liquid ethanol, which has been achieved at room temperature and in the absence of any catalyst, upon electric field exposure. This result paves the way to the unprecedented catalyst-free experimental synthesis of hydrogen from liquid ethanol by exploiting a commonly employed field emitter tip apparatus.

Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study

Cassone Giuseppe;
2019

Abstract

Hydrogen is the simplest, oldest, and most widespread molecule in nature. Nevertheless, the vast majority of the hydrogen industrial production stems from steam reforming of methane performed at high temperatures or pressures. Albeit other chemical routes to the hydrogen synthesis, involving, for example, water electrolysis and novel photocatalysts, have recently been explored, no catalyst-free reaction pathways have been identified, seriously limiting the large-scale deployment of hydrogen. On the basis of state-of-the-art ab initio molecular dynamics simulations, here, we present a study revealing a novel synthesis route to hydrogen from neat liquid ethanol, which has been achieved at room temperature and in the absence of any catalyst, upon electric field exposure. This result paves the way to the unprecedented catalyst-free experimental synthesis of hydrogen from liquid ethanol by exploiting a commonly employed field emitter tip apparatus.
2019
Istituto per i Processi Chimico-Fisici - IPCF
Hydrogen synthesis
File in questo prodotto:
File Dimensione Formato  
cassone-et-al-2019-catalyst-free-hydrogen-synthesis-from-liquid-ethanol-an-ab-initio-molecular-dynamics-study.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact