Currently, MMCs with SiC as reinforcement emerge as ideal candidates for long-term stable devices withstanding high temperatures and harsh operating environments which are typical for many industrial sectors, such as energy, aerospace, electronics, catalysis, etc. However, the costly manufacture of such composites is the major restraint to make them marketable. In this paper, highly-dense, nearly-shaped SiC/IrSi3 composites effortless produced at T = 1250 °C under a vacuum by reactive melt infiltration of liquid Si-62 wt%Ir eutectic alloy into bimodal SiCp-C porous preforms, are presented. The replacement of unreacted detrimental Si by a tougher and less oxidizing intermetallic phase (IrSi3) was successfully obtained.

New advanced SiC-based composite materials for use in highly oxidizing environments: Synthesis of SiC/IrSi3

Giuranno D;
2020

Abstract

Currently, MMCs with SiC as reinforcement emerge as ideal candidates for long-term stable devices withstanding high temperatures and harsh operating environments which are typical for many industrial sectors, such as energy, aerospace, electronics, catalysis, etc. However, the costly manufacture of such composites is the major restraint to make them marketable. In this paper, highly-dense, nearly-shaped SiC/IrSi3 composites effortless produced at T = 1250 °C under a vacuum by reactive melt infiltration of liquid Si-62 wt%Ir eutectic alloy into bimodal SiCp-C porous preforms, are presented. The replacement of unreacted detrimental Si by a tougher and less oxidizing intermetallic phase (IrSi3) was successfully obtained.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Ir-silicides
MMCs
Oxidizing atmosphere
Reactive infiltration
Silicon carbide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact