Enzymes are among the most studied biological molecules because better understanding enzymes structure and activity will shed more light on their biological processes and regulation;from a biotechnological point of view there are many examples of enzymes used with the aim to obtain new products and/or to make industrial processes less invasive towards the environment.Enzymes are known for their high specificity in the recognition of a substrate but considering the particular features of an increasing number of enzymes this is not completely true, in fact, many enzymes are active on different substrates: this ability is called enzyme promiscuity. Usually, promiscuous activities have significantly lower kinetic parameters than to that of primaryactivity, but they have a crucial role in gene evolution. It is accepted that gene duplication followed by sequence divergence is considered a key evolutionary mechanism to generate new enzyme functions. In this way, promiscuous activities are the starting point to increase a secondary activity in the main activity and then get a new enzyme. The primary activity can be lost or reduced to a promiscuous activity.In this review we describe the differences between substrate and enzyme promiscuity, and its rule in gene evolution. From a practical point of view the knowledge of promiscuity can facilitate the in vitro progress of proteins engineering, both for biomedical and industrial applications. In particular, we report cases regarding esterases, phosphotriesterases and cytochrome P450.
Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects
De luca Valentina;Mandrich Luigi
2020
Abstract
Enzymes are among the most studied biological molecules because better understanding enzymes structure and activity will shed more light on their biological processes and regulation;from a biotechnological point of view there are many examples of enzymes used with the aim to obtain new products and/or to make industrial processes less invasive towards the environment.Enzymes are known for their high specificity in the recognition of a substrate but considering the particular features of an increasing number of enzymes this is not completely true, in fact, many enzymes are active on different substrates: this ability is called enzyme promiscuity. Usually, promiscuous activities have significantly lower kinetic parameters than to that of primaryactivity, but they have a crucial role in gene evolution. It is accepted that gene duplication followed by sequence divergence is considered a key evolutionary mechanism to generate new enzyme functions. In this way, promiscuous activities are the starting point to increase a secondary activity in the main activity and then get a new enzyme. The primary activity can be lost or reduced to a promiscuous activity.In this review we describe the differences between substrate and enzyme promiscuity, and its rule in gene evolution. From a practical point of view the knowledge of promiscuity can facilitate the in vitro progress of proteins engineering, both for biomedical and industrial applications. In particular, we report cases regarding esterases, phosphotriesterases and cytochrome P450.File | Dimensione | Formato | |
---|---|---|---|
prod_418463-doc_147771.pdf
solo utenti autorizzati
Descrizione: PPL 2020 Mandrich
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
891.48 kB
Formato
Adobe PDF
|
891.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.