Layered Double Hydroxide (LDH), characterized by a high aspect ratio and hydrophilic functional groups on the surface, was incorporated into Nafion to obtained nanocomposite membranes with appropriate morphology and demonstrating the possibility of mechanical aligning the exfoliated nanoparticles.

The inclusion of hydrophilic 2D-nanoparticles in a polymeric matrix demonstrated to be a promising strategy both to improve the proton transport in proton exchange membrane fuel cells (PEMFCs), and to mitigate the methanol crossover in direct methanol fuel cells (DMFCs), acting as physical barriers. Moreover, a higher order's degree in the arrangement of the filler's platelets, e.g. aligned parallel to the membrane surface, may further reduce the detrimental effect of the methanol permeation as a consequence of the greater obstruction and increased tortuosity of the fuel diffusion path.

Advances in hybrid composite membranes engineering for high-performance direct methanol fuel cells by alignment of 2D nanostructures and a dual-layer approach

Lo Vecchio Carmelo;Baglio Vincenzo;Nicotera Isabella
2020

Abstract

The inclusion of hydrophilic 2D-nanoparticles in a polymeric matrix demonstrated to be a promising strategy both to improve the proton transport in proton exchange membrane fuel cells (PEMFCs), and to mitigate the methanol crossover in direct methanol fuel cells (DMFCs), acting as physical barriers. Moreover, a higher order's degree in the arrangement of the filler's platelets, e.g. aligned parallel to the membrane surface, may further reduce the detrimental effect of the methanol permeation as a consequence of the greater obstruction and increased tortuosity of the fuel diffusion path.
2020
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Layered Double Hydroxide (LDH), characterized by a high aspect ratio and hydrophilic functional groups on the surface, was incorporated into Nafion to obtained nanocomposite membranes with appropriate morphology and demonstrating the possibility of mechanical aligning the exfoliated nanoparticles.
Nanocomposite membranes
LDH
Rheo-MRI
Self-diffusion coefficient
Proton transport
DMFC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact