The interaction between gold sub-nanometer clusters composed of ten atoms (Au-10) and tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated through various spectroscopic techniques. Under mild acidic conditions, the formation, in aqueous solutions, of nanohybrid assemblies of porphyrin J-aggregates and Au-10 cluster nanoparticles was observed. This supramolecular system tends to spontaneously cover glass substrates with a co-deposit of gold nanoclusters and porphyrin nanoaggregates, which exhibit circular dichroism (CD) spectra reflecting the enantiomorphism of histidine used as capping and reducing agent. The morphology of nanohybrid assemblies onto a glass surface was revealed by atomic force microscopy (AFM), and showed the concomitant presence of gold nanoparticles with an average size of 130 nm and porphyrin J-aggregates with lengths spanning from 100 to 1000 nm. Surface-enhanced Raman scattering (SERS) was observed for the nanohybrid assemblies.

Nanohybrid Assemblies of Porphyrin and Au-10 Cluster Nanoparticles

Trapani Mariachiara;Romeo Andrea;
2019

Abstract

The interaction between gold sub-nanometer clusters composed of ten atoms (Au-10) and tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated through various spectroscopic techniques. Under mild acidic conditions, the formation, in aqueous solutions, of nanohybrid assemblies of porphyrin J-aggregates and Au-10 cluster nanoparticles was observed. This supramolecular system tends to spontaneously cover glass substrates with a co-deposit of gold nanoclusters and porphyrin nanoaggregates, which exhibit circular dichroism (CD) spectra reflecting the enantiomorphism of histidine used as capping and reducing agent. The morphology of nanohybrid assemblies onto a glass surface was revealed by atomic force microscopy (AFM), and showed the concomitant presence of gold nanoparticles with an average size of 130 nm and porphyrin J-aggregates with lengths spanning from 100 to 1000 nm. Surface-enhanced Raman scattering (SERS) was observed for the nanohybrid assemblies.
2019
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
gold clusters
plating
porphyrin
chirality
SERS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact