Inconsistencies between published estimates of dominance heritability between studies of human genetic isolates and human outbred populations incite investigation into whether such differences result from particular trait architectures or specific population structures. We analyse simulated datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate of Cilento for various commonly studied traits. We show the strengths of using genetic relationship matrices for variance decomposition over identity-by-descent based methods in a population isolate and that heritability estimates in isolates will avoid the downward biases that may occur in studies of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, we also show that precise estimates of dominance in isolates are demonstrably problematic in the presence of shared environmental effects and such effects should be accounted for. Nevertheless, we demonstrate how studying isolates can help determine the existence or non-existence of dominance for complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from ensemble data across multiple population isolates.
Detecting the dominance component of heritability in isolated and outbred human populations
Nutile Teresa;Ruggiero Daniela;Ciullo Marina;
2018
Abstract
Inconsistencies between published estimates of dominance heritability between studies of human genetic isolates and human outbred populations incite investigation into whether such differences result from particular trait architectures or specific population structures. We analyse simulated datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate of Cilento for various commonly studied traits. We show the strengths of using genetic relationship matrices for variance decomposition over identity-by-descent based methods in a population isolate and that heritability estimates in isolates will avoid the downward biases that may occur in studies of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, we also show that precise estimates of dominance in isolates are demonstrably problematic in the presence of shared environmental effects and such effects should be accounted for. Nevertheless, we demonstrate how studying isolates can help determine the existence or non-existence of dominance for complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from ensemble data across multiple population isolates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.