The integration of lead sulfide quantum dots (QDs) with a high-conductivity material that is compatible with a scalable fabrication is an important route for the applications of QD-based photodetectors. Herein, we first developed a broadband photodetector by combining amorphous ZnO and PbS QDs, forming a heterojunction structure. The photodetector showed detectivity up to 7.9 × 1012 and 4.1 × 1011 jones under 640 and 1310 nm illumination, respectively. The role of the oxygen background pressure in the electronic structure of ZnO films grown by pulsed laser deposition was systematically studied, and it was found to play an important role in the conductivity associated with the variation of the oxygen vacancy concentration. By increasing the oxygen vacancy concentration, the electron mobility of amorphous ZnO layers dramatically increased and the work function decreased, which were beneficial for the photocurrent enhancement of ZnO/PbS QD photodetectors. Our results provide a simple and highly scalable approach to develop broadband photodetectors with high performance

Amorphous ZnO/PbS Quantum Dots Heterojunction for Efficient Responsivity Broadband Photodetectors

Aruta C;Foglietti V;
2020

Abstract

The integration of lead sulfide quantum dots (QDs) with a high-conductivity material that is compatible with a scalable fabrication is an important route for the applications of QD-based photodetectors. Herein, we first developed a broadband photodetector by combining amorphous ZnO and PbS QDs, forming a heterojunction structure. The photodetector showed detectivity up to 7.9 × 1012 and 4.1 × 1011 jones under 640 and 1310 nm illumination, respectively. The role of the oxygen background pressure in the electronic structure of ZnO films grown by pulsed laser deposition was systematically studied, and it was found to play an important role in the conductivity associated with the variation of the oxygen vacancy concentration. By increasing the oxygen vacancy concentration, the electron mobility of amorphous ZnO layers dramatically increased and the work function decreased, which were beneficial for the photocurrent enhancement of ZnO/PbS QD photodetectors. Our results provide a simple and highly scalable approach to develop broadband photodetectors with high performance
2020
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
amorphous ZnO
broadband photodetector
heterojunction
mobility
oxygen vacancy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact