As meticulously observed and recorded by Darwin, the leaves of the carnivorous plant Drosera capensis L. slowly fold around insects trapped on their sticky surface in order to ensure their digestion. While the biochemical signaling driving leaf closure has been associated with plant growth hormones, how mechanical forces actuate the process is still unknown. Here, we combine experimental tests of leaf mechanics with quantitative measurements of the leaf microstructure and biochemistry to demonstrate that the closure mechanism is programmed into the cellular architecture of D. capensis leaves, which converts a homogeneous biochemical signal into an asymmetric response. Inspired by the leaf closure mechanism, we devise and test a mechanical metamaterial, which curls under homogeneous mechanical stimuli. This kind of metamaterial could find possible applications as a component in soft robotics and provides an example of bioinspired design.

Metamaterial architecture from a self-shaping carnivorous plant

Tuissi A;Zapperi S
2019

Abstract

As meticulously observed and recorded by Darwin, the leaves of the carnivorous plant Drosera capensis L. slowly fold around insects trapped on their sticky surface in order to ensure their digestion. While the biochemical signaling driving leaf closure has been associated with plant growth hormones, how mechanical forces actuate the process is still unknown. Here, we combine experimental tests of leaf mechanics with quantitative measurements of the leaf microstructure and biochemistry to demonstrate that the closure mechanism is programmed into the cellular architecture of D. capensis leaves, which converts a homogeneous biochemical signal into an asymmetric response. Inspired by the leaf closure mechanism, we devise and test a mechanical metamaterial, which curls under homogeneous mechanical stimuli. This kind of metamaterial could find possible applications as a component in soft robotics and provides an example of bioinspired design.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Drosera capensis
metamaterials
biomechanics
bending
File in questo prodotto:
File Dimensione Formato  
prod_418301-doc_147696.pdf

accesso aperto

Descrizione: Metamaterial architecture from a self-shapingcarnivorous plant
Tipologia: Versione Editoriale (PDF)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact