Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.

Root symbionts: Powerful drivers of plant above- and belowground indirect defenses

Guerrieri E
2017

Abstract

Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
2017
Istituto per la Protezione Sostenibile delle Piante - IPSP
arbuscular mycorrhizal fungi
crop protection
entomopathogenic nematodes
plant growth promoting rhizobacteria
Trichoderma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? ND
social impact