We present an algorithm for simultaneous reconstruction of optical parameters, quantum yield, and life-time in turbid media with embedded fluorescent inclusions. This algorithm is designed in the Fourier domain as an iterative solution of a system of differential equations of the Helmholtz type and does not involve full ill-conditioned matrix computations. The approach is based on allowing the unknown optical parameters, quantum yield, and lifetime to depend on the Fourier spectral parameter. The algorithm was applied to a time-gated experimental data set acquired by imaging a highly scattering cylindrical phantom concealing small fluorescent tubes. Relatively accurate reconstruction demonstrates the potential of the method.
Combined reconstruction of fluorescent and optical parameters using time-resolved data
G Valentini;R Cubeddu;
2009
Abstract
We present an algorithm for simultaneous reconstruction of optical parameters, quantum yield, and life-time in turbid media with embedded fluorescent inclusions. This algorithm is designed in the Fourier domain as an iterative solution of a system of differential equations of the Helmholtz type and does not involve full ill-conditioned matrix computations. The approach is based on allowing the unknown optical parameters, quantum yield, and lifetime to depend on the Fourier spectral parameter. The algorithm was applied to a time-gated experimental data set acquired by imaging a highly scattering cylindrical phantom concealing small fluorescent tubes. Relatively accurate reconstruction demonstrates the potential of the method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.