In this paper we introduce a newmodel describing the behavior of auxetic materials in terms of a phase-field PDE system. More precisely, the evolution equations are recovered by a generalization of the principle of virtual power in which microscopic motions and forces, responsible for the phase transitions, are included. The momentum balance is written in the setting of a second gradient theory, and it presents nonlinear contributions depending on the phases. The evolution of the phases is governed by variational inclusions with non-linear coupling terms. By use of a fixed point theorem and monotonicity arguments, we are able to show that the resulting initial and boundary value problem admits a weak solution.
A phase transition model describing auxetic materials
E Bonetti;
2017
Abstract
In this paper we introduce a newmodel describing the behavior of auxetic materials in terms of a phase-field PDE system. More precisely, the evolution equations are recovered by a generalization of the principle of virtual power in which microscopic motions and forces, responsible for the phase transitions, are included. The momentum balance is written in the setting of a second gradient theory, and it presents nonlinear contributions depending on the phases. The evolution of the phases is governed by variational inclusions with non-linear coupling terms. By use of a fixed point theorem and monotonicity arguments, we are able to show that the resulting initial and boundary value problem admits a weak solution.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_383170-doc_130597.pdf
solo utenti autorizzati
Descrizione: A phase transition model describing auxetic materials
Tipologia:
Versione Editoriale (PDF)
Dimensione
267.01 kB
Formato
Adobe PDF
|
267.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


