We introduce a rigorous, physically appealing, and practical way to measure distances between exchange-only correlations of interacting many-electron systems, which works regardless of their size and inhomogeneity. We show that this distance captures fundamental physical features such as the periodicity of atomic elements, and that it can be used to effectively and efficiently analyze the performance of density functional approximations. We suggest that this metric can find useful applications in high-throughput materials design.

Fermionic correlations as metric distances: A useful tool for materials science

Pittalis Stefano;
2017

Abstract

We introduce a rigorous, physically appealing, and practical way to measure distances between exchange-only correlations of interacting many-electron systems, which works regardless of their size and inhomogeneity. We show that this distance captures fundamental physical features such as the periodicity of atomic elements, and that it can be used to effectively and efficiently analyze the performance of density functional approximations. We suggest that this metric can find useful applications in high-throughput materials design.
2017
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact