The Detweiler-Barack-Sago redshift function for particles moving along slightly eccentric equatorial orbits around a Kerr black hole is currently known up to the second order in eccentricity, second order in spin parameter, and the 8.5 post-Newtonian order. We improve the analytical computation of such a gaugeinvariant quantity by including terms up to the fourth order in eccentricity at the same post-Newtonian approximation level. We also check that our results agrees with the corresponding post-Newtonian expectation of the same quantity, calculated by using the currently known Hamiltonian for spinning binaries.

New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: Redshift invariant

Bini Donato;Geralico Andrea
2019

Abstract

The Detweiler-Barack-Sago redshift function for particles moving along slightly eccentric equatorial orbits around a Kerr black hole is currently known up to the second order in eccentricity, second order in spin parameter, and the 8.5 post-Newtonian order. We improve the analytical computation of such a gaugeinvariant quantity by including terms up to the fourth order in eccentricity at the same post-Newtonian approximation level. We also check that our results agrees with the corresponding post-Newtonian expectation of the same quantity, calculated by using the currently known Hamiltonian for spinning binaries.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
Gravitational self-force
eccentric orbits
Kerr spacetime
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact