We analytically compute the gravitational self-force correction to the gyroscope precession along slightly eccentric equatorial orbits in the Kerr spacetime, generalizing previous results for the Schwarzs-child spacetime. Our results are accurate through the 9.5 post-Newtonian order and to second order in both eccentricity and rotation parameter. We also provide a post-Newtonian check of our results based on the currently known Hamiltonian for spinning binaries.

New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: Gyroscope precession

Bini Donato;Geralico Andrea
2019

Abstract

We analytically compute the gravitational self-force correction to the gyroscope precession along slightly eccentric equatorial orbits in the Kerr spacetime, generalizing previous results for the Schwarzs-child spacetime. Our results are accurate through the 9.5 post-Newtonian order and to second order in both eccentricity and rotation parameter. We also provide a post-Newtonian check of our results based on the currently known Hamiltonian for spinning binaries.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
Gravitational self-force
eccentric orbits
Kerr black hole
Gyroscope precession
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact