Polarisation of light is a powerful and widely used degree of freedom to encode information, both in classical and quantum applications. In particular, quantum information technologies based on photons are being revolutionised by the use of integrated photonic circuits. It is therefore very important to be able to manipulate the polarisation of photons in such circuits. We experimentally demonstrate the fabrication by femtosecond laser micromachining of components such as polarisation insensitive and polarising directional couplers, operating at 1550 nm wavelength, where the two opposite behaviours are achieved just by controlling the geometric layout of the photonic circuits, being the waveguides fabricated with the same irradiation recipe. We expect to employ this approach in complex integrated photonic devices, capable of a full control of the photons polarisation for quantum cryptography, quantum computation and quantum teleportation experiments.

Geometrically-controlled polarisation processing in femtosecond-laser-written photonic circuits

Corrielli Giacomo;Crespi Andrea;Osellame Roberto
2017

Abstract

Polarisation of light is a powerful and widely used degree of freedom to encode information, both in classical and quantum applications. In particular, quantum information technologies based on photons are being revolutionised by the use of integrated photonic circuits. It is therefore very important to be able to manipulate the polarisation of photons in such circuits. We experimentally demonstrate the fabrication by femtosecond laser micromachining of components such as polarisation insensitive and polarising directional couplers, operating at 1550 nm wavelength, where the two opposite behaviours are achieved just by controlling the geometric layout of the photonic circuits, being the waveguides fabricated with the same irradiation recipe. We expect to employ this approach in complex integrated photonic devices, capable of a full control of the photons polarisation for quantum cryptography, quantum computation and quantum teleportation experiments.
2017
Istituto di fotonica e nanotecnologie - IFN
directional couplers
polarization insensitivity
femtosecond laser writing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact