Several natural and synthetic polysaccharides are able to form, under appropriate conditions, supramolecular structures, typically physical hydrogels, and, together with their biocompatibility, this explains their wide use in food, pharmaceutical and biomedical sectors. In the case of high methoxyl pectins (HMP) the gel formation is promoted by the presence of cosolutes (sugars or polyols) and low pH. The present investigation mainly regards the structuring kinetics of aqueous HMP solutions at add pH (3.1) with the same pectin concentration (0.2% w/w) and different sucrose concentrations (from 56 to 65% w/w). Preliminary viscosity tests were performed to individuate the threshold of the sol region. A sequence of consecutive frequency sweeps was applied to each sample immediately after its preparation. The time evolution of the linear viscoelastic behavior is described by the sigmoidal profiles of both moduli at each applied frequency and more thoroughly defined through the change of the mechanical spectrum, i.e. the variation of the parameters of the generalized Maxwell model or the Friedrich-Braun model which are both suitable to provide a satisfactory data fitting. In particular, the equilibrium modulus G(e) offers a significant description of the gelation kinetics and its sucrose dependence.

The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin

Giacomazza D;Bulone D;San Biagio PL;
2018

Abstract

Several natural and synthetic polysaccharides are able to form, under appropriate conditions, supramolecular structures, typically physical hydrogels, and, together with their biocompatibility, this explains their wide use in food, pharmaceutical and biomedical sectors. In the case of high methoxyl pectins (HMP) the gel formation is promoted by the presence of cosolutes (sugars or polyols) and low pH. The present investigation mainly regards the structuring kinetics of aqueous HMP solutions at add pH (3.1) with the same pectin concentration (0.2% w/w) and different sucrose concentrations (from 56 to 65% w/w). Preliminary viscosity tests were performed to individuate the threshold of the sol region. A sequence of consecutive frequency sweeps was applied to each sample immediately after its preparation. The time evolution of the linear viscoelastic behavior is described by the sigmoidal profiles of both moduli at each applied frequency and more thoroughly defined through the change of the mechanical spectrum, i.e. the variation of the parameters of the generalized Maxwell model or the Friedrich-Braun model which are both suitable to provide a satisfactory data fitting. In particular, the equilibrium modulus G(e) offers a significant description of the gelation kinetics and its sucrose dependence.
2018
Istituto di Biofisica - IBF
Generalized Maxwell and Friedrich-Braun models
High methoxyl pectin
Mechanical spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact