Metal halide perovskites are rivaling established materials for thin film photovoltaics. Being able to tune interfacial alignment of energy levels may allow a further boost to the efficiency of perovskite optoelectronic devices. By using Density Functional Theory (DFT) modeling and experimental analysis, we show that the band edge energies of the prototypical MAPbI(3) (MA = methylammonium) perovskite can in principle be varied by as much as 1 eV via postsynthetic chemical treatment. In particular, MAI-rich (PbI2-rich) surfaces induce an energy upshift (downshift) of the perovskite band energies, and this can either inhibit or favor hole transfer at the perovskite/HTL interface.

Energy Level Tuning at the MAPbI(3) Perovskite/Contact Interface Using Chemical Treatment

Meggiolaro Daniele;Mosconi Edoardo;De Angelis Filippo
2019

Abstract

Metal halide perovskites are rivaling established materials for thin film photovoltaics. Being able to tune interfacial alignment of energy levels may allow a further boost to the efficiency of perovskite optoelectronic devices. By using Density Functional Theory (DFT) modeling and experimental analysis, we show that the band edge energies of the prototypical MAPbI(3) (MA = methylammonium) perovskite can in principle be varied by as much as 1 eV via postsynthetic chemical treatment. In particular, MAI-rich (PbI2-rich) surfaces induce an energy upshift (downshift) of the perovskite band energies, and this can either inhibit or favor hole transfer at the perovskite/HTL interface.
2019
RECOMBINATION
PASSIVATION
IMPACT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact