A novel application of geopolymers for the catalytic cleaning of biomass-derived syngas is reported. Powders of metal oxides, i.e. Fe2O3 and Mn2O3, were dispersed in a geopolymer matrix, to produce composites in granular form for fixed bed application. Additionally, a mixed Fe/Mn composite was produced to explore the combined effects of the two oxides. The activity of the new catalysts was investigated in real gasification conditions by means of a double fixed bed reactor, at 700, 800 and 900 °C. All the systems promoted an appreciable tar removal, while FE-SEM and MIP analyses demonstrated their stability at the process conditions. The best performances were obtained using the composite including both Mn and Fe oxides, which registered a tar decomposition up to 86% compared to inert sand, and 50% compared to olivine. A reasonable explanation was provided by TPR and XRD analyses, which pointed out an easier reducibility of this system.

Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas

Bendoni R;Miccio F;Medri V;Vaccari A;Landi E
2019

Abstract

A novel application of geopolymers for the catalytic cleaning of biomass-derived syngas is reported. Powders of metal oxides, i.e. Fe2O3 and Mn2O3, were dispersed in a geopolymer matrix, to produce composites in granular form for fixed bed application. Additionally, a mixed Fe/Mn composite was produced to explore the combined effects of the two oxides. The activity of the new catalysts was investigated in real gasification conditions by means of a double fixed bed reactor, at 700, 800 and 900 °C. All the systems promoted an appreciable tar removal, while FE-SEM and MIP analyses demonstrated their stability at the process conditions. The best performances were obtained using the composite including both Mn and Fe oxides, which registered a tar decomposition up to 86% compared to inert sand, and 50% compared to olivine. A reasonable explanation was provided by TPR and XRD analyses, which pointed out an easier reducibility of this system.
2019
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Biomass gasification
Geopolymers
Iron oxide
Manganese oxide
Tar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact