This paper describes the results obtained so far with AquEYE, a single photon counting, fixed aperture photometer for the Asiago 182 cm telescope. AquEYE has been conceived as a prototype of a truly 'quantum' photometer for future Extremely Large Telescopes of 30-50 m aperture. This prototype is characterized by four independent channels equipped with single photon avalanche diodes (SPADs) as detectors. The counts from the four channels are acquired by a TDC board which has a nominal 25 ps time tagging capability. Taking into account the 35 ps jitter in the SPAD itself, the overall precision of the time tags is of the order of 50 ps. The internal oscillator is locked to an external rubidium clock; a GPS pulse per second is collected by the TDC itself to obtain a UTC reference. The maximum photon count rate which the present system can sustain is 12 MHz.
AquEYE, a single photon counting photometer for astronomy
V Da Deppo;
2009
Abstract
This paper describes the results obtained so far with AquEYE, a single photon counting, fixed aperture photometer for the Asiago 182 cm telescope. AquEYE has been conceived as a prototype of a truly 'quantum' photometer for future Extremely Large Telescopes of 30-50 m aperture. This prototype is characterized by four independent channels equipped with single photon avalanche diodes (SPADs) as detectors. The counts from the four channels are acquired by a TDC board which has a nominal 25 ps time tagging capability. Taking into account the 35 ps jitter in the SPAD itself, the overall precision of the time tags is of the order of 50 ps. The internal oscillator is locked to an external rubidium clock; a GPS pulse per second is collected by the TDC itself to obtain a UTC reference. The maximum photon count rate which the present system can sustain is 12 MHz.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.