Magneto-plasmonic nanostructures functionalized with cell targeting units are of great interest for nanobiotechnology applications. Photothermal treatment of cells targeted with antibody functionalized nanostructures and followed by magnetic isolation, allows killing selected cells and hence is one of the applications of great interest. The magneto-plasmonic nanostructures reported herein were synthesized using naked gold and magnetite nanoparticles obtained through a green approach based on laser ablation of bulk materials in water. These particles do not need purifications steps for biocompatibility and are functionalized with a SERRS (surface enhanced resonance Raman scattering) active molecule for detection and with an antibody for targeting prostate tumor cells. Quantitative results for the cell targeting and selection efficiency show an overall accuracy of 94% at picomolar concentrations. The photothermal treatment efficiently kills targeted and magneto-selected cells producing a viability below 5% after 3 min of irradiation, compared with almost 100% viability of incubated and irradiated, but non targeted cells.
Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells
Fiameni S;
2018
Abstract
Magneto-plasmonic nanostructures functionalized with cell targeting units are of great interest for nanobiotechnology applications. Photothermal treatment of cells targeted with antibody functionalized nanostructures and followed by magnetic isolation, allows killing selected cells and hence is one of the applications of great interest. The magneto-plasmonic nanostructures reported herein were synthesized using naked gold and magnetite nanoparticles obtained through a green approach based on laser ablation of bulk materials in water. These particles do not need purifications steps for biocompatibility and are functionalized with a SERRS (surface enhanced resonance Raman scattering) active molecule for detection and with an antibody for targeting prostate tumor cells. Quantitative results for the cell targeting and selection efficiency show an overall accuracy of 94% at picomolar concentrations. The photothermal treatment efficiently kills targeted and magneto-selected cells producing a viability below 5% after 3 min of irradiation, compared with almost 100% viability of incubated and irradiated, but non targeted cells.File | Dimensione | Formato | |
---|---|---|---|
prod_420237-doc_148860.pdf
solo utenti autorizzati
Descrizione: Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.