The relevance of pH assessment in clinical analysis, environmental and industrial control, has raised the demand for the development of portable, low cost and easy-to-use monitoring systems. This paper proposes a pH sensor printed on a paper support passivated with a solid-ink coating. The sensor exploits the pH sensitivity of a reduced graphene oxide functionalized with 3-(4-aminophenil)propionic acid. The sensor responded in the pH range [4, 10] and had a sensitivity of 46 mV/pH. Tests on human plasma and seawater proved this pH sensor to have similar performances than those of a commercial pH-meter with an uncertainty of 0.1 and 0.2 pH unit in plasma and seawater, respectively.

A graphene-based pH sensor on paper for human plasma and seawater

Salvo P;
2019

Abstract

The relevance of pH assessment in clinical analysis, environmental and industrial control, has raised the demand for the development of portable, low cost and easy-to-use monitoring systems. This paper proposes a pH sensor printed on a paper support passivated with a solid-ink coating. The sensor exploits the pH sensitivity of a reduced graphene oxide functionalized with 3-(4-aminophenil)propionic acid. The sensor responded in the pH range [4, 10] and had a sensitivity of 46 mV/pH. Tests on human plasma and seawater proved this pH sensor to have similar performances than those of a commercial pH-meter with an uncertainty of 0.1 and 0.2 pH unit in plasma and seawater, respectively.
2019
Istituto di Fisiologia Clinica - IFC
9781538613115
biosensor
seawater
human plasma
graphene
pH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact