Bulk Heterojunction (BHJ) solar cells have reached Power Conversion Efficiencies (PCE) over 10% but to be a competitive product long lifetimes are mandatory. In this view, guidelines for the prediction and optimization of the device stability are crucial to generate improved materials for efficient and stable BHJ devices. For encapsulated cells, degradation mechanisms can be mainly ascribed to external agents such as light and temperature. In particular, thermal degradation appears to be related not only to the BHJ morphology but also to the adjacent interfaces. Therefore, in order to have a complete description of the thermal stability of a BHJ cell, it is necessary to consider the entire stack degradation processes by using techniques enabling a direct investigation on working devices. Here, five different donor polymers were selected and the OPV performance of the corresponding BHJ devices were monitored during the thermal degradation at 85°C, showing an exponential decay of the corresponding PCEs. In parallel, we measured the geometrical capacitance of analogous OPV devices as a function of temperature and we observed that at a defined temperature (TMAX), typical for each polymer-based device, the capacitance starts to decrease. Combining all these results we found an evident and direct correlation between TMAX and the PCE decay parameters (obtained from capacitance-temperature an thermal measurements, respectively). This implies that the capacitance-method here presented is a fast, reliable and relatively simple method to predict the thermal stability of BHJ solar cells without the need to perform time-consuming thermal degradation tests.

Predicting thermal stability of organic solar cells through real-time capacitive techniques

Tessarolo Marta;Seri Mirko;Prosa Mario;Bolognesi Margherita;
2015

Abstract

Bulk Heterojunction (BHJ) solar cells have reached Power Conversion Efficiencies (PCE) over 10% but to be a competitive product long lifetimes are mandatory. In this view, guidelines for the prediction and optimization of the device stability are crucial to generate improved materials for efficient and stable BHJ devices. For encapsulated cells, degradation mechanisms can be mainly ascribed to external agents such as light and temperature. In particular, thermal degradation appears to be related not only to the BHJ morphology but also to the adjacent interfaces. Therefore, in order to have a complete description of the thermal stability of a BHJ cell, it is necessary to consider the entire stack degradation processes by using techniques enabling a direct investigation on working devices. Here, five different donor polymers were selected and the OPV performance of the corresponding BHJ devices were monitored during the thermal degradation at 85°C, showing an exponential decay of the corresponding PCEs. In parallel, we measured the geometrical capacitance of analogous OPV devices as a function of temperature and we observed that at a defined temperature (TMAX), typical for each polymer-based device, the capacitance starts to decrease. Combining all these results we found an evident and direct correlation between TMAX and the PCE decay parameters (obtained from capacitance-temperature an thermal measurements, respectively). This implies that the capacitance-method here presented is a fast, reliable and relatively simple method to predict the thermal stability of BHJ solar cells without the need to perform time-consuming thermal degradation tests.
2015
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
solar cells
organic photovoltaics
capacitance
polymers
temperatures metrology
heterojunctions
interfaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact