This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C-8), dodecylamine (C-12) and octadecylamine (C-18) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl2 0.102M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels.
Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives
Giammona G
2018
Abstract
This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C-8), dodecylamine (C-12) and octadecylamine (C-18) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl2 0.102M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


