Let A be an n x n real symmetric diagonal dominant matrix with positive diagonal part D, and let S^2 = D, and H = SAS. The following relation between the condition number k(H) = ?H^(-1)? ?H? and the spectral radius r of the Jacobi matrix associated to A is proved: (k(H) -1)/(k(H)+ 1) ? r ? (k(H) -1)/(1 + k(H)/(n -1)). Moreover, relations among k(H), k(A), the condition numbers C(H)=?| H^(-1)||H|?, and C(A) are investigated.

Relations between condition numbers and the convergence of the Jacobi method for real positive definite matrices

1985

Abstract

Let A be an n x n real symmetric diagonal dominant matrix with positive diagonal part D, and let S^2 = D, and H = SAS. The following relation between the condition number k(H) = ?H^(-1)? ?H? and the spectral radius r of the Jacobi matrix associated to A is proved: (k(H) -1)/(k(H)+ 1) ? r ? (k(H) -1)/(1 + k(H)/(n -1)). Moreover, relations among k(H), k(A), the condition numbers C(H)=?| H^(-1)||H|?, and C(A) are investigated.
1985
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Jacobi Method
real positive definite matrices
File in questo prodotto:
File Dimensione Formato  
prod_420297-doc_148922.pdf

solo utenti autorizzati

Descrizione: Relations between condition numbers and the convergence of the Jacobi Method for real positive definite matrices
Tipologia: Versione Editoriale (PDF)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact