Sodium lauryl ether sulphate (SLES) is the main chemical component in several lubricant products used for soil conditioning in the mechanized excavation industry using Earth Pressure Balance-Tunnel Boring Machines. During the tunnelling process, huge amounts of excavated soil are produced and the SLES presence can affect the subsequent re-use of this material as a by-product. Currently, there is still no regulatory indication of reliable and sensitive bioassays for monitoring soil quality during the excavation process. The main objective of this work was to verify if the Vibrio fischeri screening test was suitable as a consistent and precautionary tool for this specific purpose. Firstly, the ecotoxicity (EC20 and EC50) of the SLES standard solution and three commercial products (SLES content from 10 to 50%) were evaluated to select the most environmental friendly product. Subsequently, soil samples from about 2 years of tunnelling in a real construction site, conditioned with the selected product, were evaluated for their environmental compatibility with the prescriptions of an Italian site-specific protocol. The latter established 2 mg/L as a threshold value for SLES concentration in soil water extracts and a no toxic response (<=20%) for the Vibrio fischeri test. The comparison of the bacterium bioluminescence inhibition values (%) with analytical determinations showed an ecotoxicity when SLES was >2 mg/L. The toxicity was directly related to SLES concentration, indicating that the V. fischeri test and the SLES analyses are suitable tools for assessing excavated soil as a by-product, ensuring its safe reuse in accordance with a green production process (circular economy).

Toxic response of the bacterium Vibrio fischeri to sodium lauryl ether sulphate residues in excavated soils

L Mariani;P Grenni;Anna Barra Caracciolo;E Donati;J Rauseo;L Rolando;L Patrolecco
2020-01-01

Abstract

Sodium lauryl ether sulphate (SLES) is the main chemical component in several lubricant products used for soil conditioning in the mechanized excavation industry using Earth Pressure Balance-Tunnel Boring Machines. During the tunnelling process, huge amounts of excavated soil are produced and the SLES presence can affect the subsequent re-use of this material as a by-product. Currently, there is still no regulatory indication of reliable and sensitive bioassays for monitoring soil quality during the excavation process. The main objective of this work was to verify if the Vibrio fischeri screening test was suitable as a consistent and precautionary tool for this specific purpose. Firstly, the ecotoxicity (EC20 and EC50) of the SLES standard solution and three commercial products (SLES content from 10 to 50%) were evaluated to select the most environmental friendly product. Subsequently, soil samples from about 2 years of tunnelling in a real construction site, conditioned with the selected product, were evaluated for their environmental compatibility with the prescriptions of an Italian site-specific protocol. The latter established 2 mg/L as a threshold value for SLES concentration in soil water extracts and a no toxic response (<=20%) for the Vibrio fischeri test. The comparison of the bacterium bioluminescence inhibition values (%) with analytical determinations showed an ecotoxicity when SLES was >2 mg/L. The toxicity was directly related to SLES concentration, indicating that the V. fischeri test and the SLES analyses are suitable tools for assessing excavated soil as a by-product, ensuring its safe reuse in accordance with a green production process (circular economy).
2020
Istituto per i Sistemi Biologici - ISB (ex IMC)
Istituto di Ricerca Sulle Acque - IRSA
Istituto di Scienze Polari - ISP
Anionic surfactant
TBM-EPB tunnelling
Soil re-use management
Site specific protocol
Environmental compatibility
Circular economy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact