Anaerobic digestion is applied worldwide to treat food waste (FW) with the aim of obtaining renewable bioenergy by exploiting the methane gas produced. However, there are several problems in practical applications, primarily due to system instability. Although exhaustive knowledge regarding anaerobic microbial community composition has been established, few studies have investigated long-term correlations between microbial consortia, operative conditions and feedstock characteristics. Here, microbial community shifts as a response to feedstock variations were investigated in long-term semi-continuous systems, which were evaluated by an in situ cell detection method and 16S rRNA gene amplicon sequencing. FW digestion showed progressive system instability caused by the inhibition of methanogens, which resulted in volatile fatty acid accumulation and process failure at the low organic loading rate (OLR). Conversely, by co-digesting FW with waste-activated sludge (WAS), a stable process with methane yields of up to 0.27 Nm kgVS for OLR = 1.7 gVS Ld was achieved. This stabilizing effect was not related to the buffering capacity of WAS, but to its capacity to avoid volatile fatty acid accumulation and falls in pH by overcoming methanogenic activity inhibition. WAS addition promoted the establishment of a stable and active archaeal population in anaerobic co-digestion (AcoD) reactors. The continuous supply of trace elements together with the seeding of microbial functional groups were the main drivers that positively affected process stability.

Anaerobic digestion of mixed urban biowaste: The microbial community shift towards stability

Tonanzi B;Braguglia CM;Gallipoli A;Montecchio D;Pagliaccia P;Rossetti S;Gianico A
2020

Abstract

Anaerobic digestion is applied worldwide to treat food waste (FW) with the aim of obtaining renewable bioenergy by exploiting the methane gas produced. However, there are several problems in practical applications, primarily due to system instability. Although exhaustive knowledge regarding anaerobic microbial community composition has been established, few studies have investigated long-term correlations between microbial consortia, operative conditions and feedstock characteristics. Here, microbial community shifts as a response to feedstock variations were investigated in long-term semi-continuous systems, which were evaluated by an in situ cell detection method and 16S rRNA gene amplicon sequencing. FW digestion showed progressive system instability caused by the inhibition of methanogens, which resulted in volatile fatty acid accumulation and process failure at the low organic loading rate (OLR). Conversely, by co-digesting FW with waste-activated sludge (WAS), a stable process with methane yields of up to 0.27 Nm kgVS for OLR = 1.7 gVS Ld was achieved. This stabilizing effect was not related to the buffering capacity of WAS, but to its capacity to avoid volatile fatty acid accumulation and falls in pH by overcoming methanogenic activity inhibition. WAS addition promoted the establishment of a stable and active archaeal population in anaerobic co-digestion (AcoD) reactors. The continuous supply of trace elements together with the seeding of microbial functional groups were the main drivers that positively affected process stability.
2020
Istituto di Ricerca Sulle Acque - IRSA
Anaerobic co-digestion
Food waste
Waste activated sludge
inhibition
trace elements
16S rRNA gene amplicon sequencing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact