The activity of thousands of excitatory synapse in the dendritic tree produces variations of membrane potential which, while can produce the spike generation at soma (hillock), can also influence the output of a single glutamatergic synapse. We used a model of synaptic diffusion and EPSP generation to simulate the effect of different number of active synapses on the output of a single one. Our results show that, also in subthreshold conditions, the excitatory dendritic activity can influence several parameters of the single synaptic output such as its amplitude, its time course, the NMDA-component activation and consequently phenomena like STP and LTP.

Multisynaptic cooperation shapes single glutamatergic synapse response

2018

Abstract

The activity of thousands of excitatory synapse in the dendritic tree produces variations of membrane potential which, while can produce the spike generation at soma (hillock), can also influence the output of a single glutamatergic synapse. We used a model of synaptic diffusion and EPSP generation to simulate the effect of different number of active synapses on the output of a single one. Our results show that, also in subthreshold conditions, the excitatory dendritic activity can influence several parameters of the single synaptic output such as its amplitude, its time course, the NMDA-component activation and consequently phenomena like STP and LTP.
2018
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Synaptic Model
STP
LTP
AMPA
NMDA
Glutamatergic synapse
Dendritic activity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact