The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. First, we introduce a k-anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k-anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k-anonymous version of a sequence dataset, which preserves the results of sequential pattern mining. A comprehensive experimental study on realistic GPS data is carried out, which empirically shows how the protection of privacy meets analytical utility.
Anonymous sequences from trajectory data
Pinelli F;
2009
Abstract
The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. First, we introduce a k-anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k-anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k-anonymous version of a sequence dataset, which preserves the results of sequential pattern mining. A comprehensive experimental study on realistic GPS data is carried out, which empirically shows how the protection of privacy meets analytical utility.File | Dimensione | Formato | |
---|---|---|---|
prod_388642-doc_133846.pdf
solo utenti autorizzati
Descrizione: Anonymous sequences from trajectory data
Tipologia:
Versione Editoriale (PDF)
Dimensione
294.3 kB
Formato
Adobe PDF
|
294.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.