In recent years the possibility of observing by microscopy the dynamic activity of living cells has been largely pursued. We have developed a low-cost (~ 260 euros) on-stage cell incubator for inverted optical microscopes. This device allows to keep cells in good conditions for their survival and proliferation. The device is based on the use of the Arduino microprocessor interfaced with LabView. It can be connected to a computer via USB port allowing to monitor and register all the useful parameters of the measurements: temperature, CO2 concentration and relative humidity. It consists of a closed metallic and plastic (PMMA) chassis which provides optical transparency to the petri dish in order to use interference contrast imaging techniques. The system exploits also a second Arduino microprocessor to perform autofocus of the images and to automatically acquire images at defined time intervals. Cell biology laboratories could easily construct this device to allow also students to follow dynamic processes of living cells and to practice with the DIY (Do-It-Yourself) approach to biology. At the same time, students could become familiar with the use of low-cost microprocessors like Arduino.

Fabrication of a low-cost on-stage cell incubator with full automation

Mescola A;Alessandrini A
2018

Abstract

In recent years the possibility of observing by microscopy the dynamic activity of living cells has been largely pursued. We have developed a low-cost (~ 260 euros) on-stage cell incubator for inverted optical microscopes. This device allows to keep cells in good conditions for their survival and proliferation. The device is based on the use of the Arduino microprocessor interfaced with LabView. It can be connected to a computer via USB port allowing to monitor and register all the useful parameters of the measurements: temperature, CO2 concentration and relative humidity. It consists of a closed metallic and plastic (PMMA) chassis which provides optical transparency to the petri dish in order to use interference contrast imaging techniques. The system exploits also a second Arduino microprocessor to perform autofocus of the images and to automatically acquire images at defined time intervals. Cell biology laboratories could easily construct this device to allow also students to follow dynamic processes of living cells and to practice with the DIY (Do-It-Yourself) approach to biology. At the same time, students could become familiar with the use of low-cost microprocessors like Arduino.
2018
Istituto Nanoscienze - NANO
Arduino microprocessor
autofocus
LabView
Live-cell imaging
PID feedback
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact