The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings - addressable in the state-of-the-art cold-atom experiments - to ladders with a higher number of legs.

Topological phases in frustrated synthetic ladders with an odd number of legs

Fazio R;Santoro GE
2018

Abstract

The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings - addressable in the state-of-the-art cold-atom experiments - to ladders with a higher number of legs.
2018
Istituto Officina dei Materiali - IOM -
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact