A general methodology, which consists in deriving two-dimensional finite-difference schemes which involve numerical fluxes based on Dirichlet-to-Neumann maps (or Steklov-Poincare operators), is first recalled. Then, it is applied to several types of diffusion equations, some being weakly anisotropic, endowed with an external source. Standard finite-difference discretizations are systematically recovered, showing that in absence of any other mechanism, like e.g. convection and/or damping (which bring Bessel and/or Mathieu functions inside that type of numerical fluxes), these well-known schemes achieve a satisfying multi-dimensional character. (C) 2018 Published by Elsevier Ltd.

Dirichlet-to-Neumann mappings and finite-differences for anisotropic diffusion (Reprint from AN INTERNATIONAL JOURNAL COMPUTERS AND FLUIDS)

Gosse;Laurent
2018

Abstract

A general methodology, which consists in deriving two-dimensional finite-difference schemes which involve numerical fluxes based on Dirichlet-to-Neumann maps (or Steklov-Poincare operators), is first recalled. Then, it is applied to several types of diffusion equations, some being weakly anisotropic, endowed with an external source. Standard finite-difference discretizations are systematically recovered, showing that in absence of any other mechanism, like e.g. convection and/or damping (which bring Bessel and/or Mathieu functions inside that type of numerical fluxes), these well-known schemes achieve a satisfying multi-dimensional character. (C) 2018 Published by Elsevier Ltd.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Anisotropic diffusion equation
Multi-dimensional finite differences
L-spline interpolation
Steklov-Poincare (Dirichlet-to-Neumann DtN) operator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact