We study the synchronization and stability of power grids within the Kuramoto phase oscillator model with inertia with a bimodal natural frequency distribution representing the generators and the loads. The Kuramoto model describes the dynamics of the ac voltage phase and allows for a comprehensive understanding of fundamental network properties capturing the essential dynamical features of a power grid on coarse scales. We identify critical nodes through solitary frequency deviations and Lyapunov vectors corresponding to unstable Lyapunov exponents. To cure dangerous deviations from synchronization we propose time-delayed feedback control, which is an efficient control concept in nonlinear dynamic systems. Different control strategies are tested and compared with respect to the minimum number of controlled nodes required to achieve synchronization and Lyapunov stability. As a proof of principle, this fast-acting control method is demonstrated for different networks (the German and the Italian power transmission grid), operating points, configurations, and models. In particular, an extended version of the Kuramoto model with inertia is considered that includes the voltage dynamics, thus taking into account the interplay of amplitude and phase typical of the electrodynamical behavior of a machine.

Enhancing power grid synchronization and stability through time delayed feedback control

Simona Olmi
;
2019

Abstract

We study the synchronization and stability of power grids within the Kuramoto phase oscillator model with inertia with a bimodal natural frequency distribution representing the generators and the loads. The Kuramoto model describes the dynamics of the ac voltage phase and allows for a comprehensive understanding of fundamental network properties capturing the essential dynamical features of a power grid on coarse scales. We identify critical nodes through solitary frequency deviations and Lyapunov vectors corresponding to unstable Lyapunov exponents. To cure dangerous deviations from synchronization we propose time-delayed feedback control, which is an efficient control concept in nonlinear dynamic systems. Different control strategies are tested and compared with respect to the minimum number of controlled nodes required to achieve synchronization and Lyapunov stability. As a proof of principle, this fast-acting control method is demonstrated for different networks (the German and the Italian power transmission grid), operating points, configurations, and models. In particular, an extended version of the Kuramoto model with inertia is considered that includes the voltage dynamics, thus taking into account the interplay of amplitude and phase typical of the electrodynamical behavior of a machine.
2019
Istituto dei Sistemi Complessi - ISC
synchronization
control
power grids
File in questo prodotto:
File Dimensione Formato  
prod_413235-doc_185094.pdf

solo utenti autorizzati

Descrizione: Enhancing power grid synchronization and stability through time-delayed feedback control
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.7 MB
Formato Adobe PDF
4.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact