n this work, we propose the use of complex, bioderived nanostructures as efficient surface-enhanced Raman scattering (SERS) substrates for chemical analysis of cellular membranes. These structures were directly obtained from a suitable gold metalization of the Pseudonitzchia multistriata diatom silica shell (the so called frustule), whose grating-like geometry provides large light coupling with external radiation, whereas its extruded, subwavelength lateral edge provides an excellent interaction with cells without steric hindrance. We carried out numerical simulations and experimental characterizations of the supported plasmonic resonances and optical near-field amplification. We thoroughly evaluated the SERS substrate enhancement factor as a function of the metalization parameters and finally applied the nanostrucures for discriminating cell membrane Raman signals. In particular, we considered two cases where the membrane composition plays a fundamental role in the assessment of several pathologies, that is, red blood cells and B-leukemia REH cells.

Bioderived Three-Dimensional Hierarchical Nanostructures as Efficient Surface-Enhanced Raman Scattering Substrates for Cell Membrane Probing

Gianluigi Zito;Alessandra Rogato;Maurizio Casalino;Emanuela Esposito;Anna Chiara De Luca;Edoardo De Tommasi
2018

Abstract

n this work, we propose the use of complex, bioderived nanostructures as efficient surface-enhanced Raman scattering (SERS) substrates for chemical analysis of cellular membranes. These structures were directly obtained from a suitable gold metalization of the Pseudonitzchia multistriata diatom silica shell (the so called frustule), whose grating-like geometry provides large light coupling with external radiation, whereas its extruded, subwavelength lateral edge provides an excellent interaction with cells without steric hindrance. We carried out numerical simulations and experimental characterizations of the supported plasmonic resonances and optical near-field amplification. We thoroughly evaluated the SERS substrate enhancement factor as a function of the metalization parameters and finally applied the nanostrucures for discriminating cell membrane Raman signals. In particular, we considered two cases where the membrane composition plays a fundamental role in the assessment of several pathologies, that is, red blood cells and B-leukemia REH cells.
2018
Istituto di Bioscienze e Biorisorse
Istituto per la Microelettronica e Microsistemi - IMM
bio-derived nanomaterials; biophotonics; cell membrane; diatoms; plasmonics; sensing; SERS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact