Hop cones, due to their essential flavor, are one of the four main ingredients for beer production. The paper reports the results on an investigation of the densification process of hop cones. This experiment investigated (i) the effects of compression pressure in the range of 40 to 80 MPa and pressure application time in the range of 10 to 40 s on the final density and durability of the compacts made from hop cones and ii) the specific compression energy required for the process. The specific compression energy requirements to compact hop cones ranged from 14.20 to 24.48 kJ kg−1. The final compact density values ranged from 515.2 to 876.6 kg m−3, while the durability percentage calculated ranged from 71% to 91%. The obtained results highlighted that compression pressure—in the range of 40–80 MPa—significantly affects the specific compression energy requirements, the final density and the durability of the produced compacts. In this experiment, pressure application time plays a key role in determining compacts density, while did not affect durability and compression energy requirements. Considering the specific compression energy values calculated in this experiment, it can be stated that the pressure agglomeration method described to compact hop cones is more efficient than pelletizing process which is typically characterized by specific energy values ranging from 19 to 90 kJ kg−1.

Effect of Densification Conditions on Specific Energy Requirements and Physical Properties of Compacts Made from Hop Cone

Pampuro;Niccolo;Cavallo;Eugenio
2018

Abstract

Hop cones, due to their essential flavor, are one of the four main ingredients for beer production. The paper reports the results on an investigation of the densification process of hop cones. This experiment investigated (i) the effects of compression pressure in the range of 40 to 80 MPa and pressure application time in the range of 10 to 40 s on the final density and durability of the compacts made from hop cones and ii) the specific compression energy required for the process. The specific compression energy requirements to compact hop cones ranged from 14.20 to 24.48 kJ kg−1. The final compact density values ranged from 515.2 to 876.6 kg m−3, while the durability percentage calculated ranged from 71% to 91%. The obtained results highlighted that compression pressure—in the range of 40–80 MPa—significantly affects the specific compression energy requirements, the final density and the durability of the produced compacts. In this experiment, pressure application time plays a key role in determining compacts density, while did not affect durability and compression energy requirements. Considering the specific compression energy values calculated in this experiment, it can be stated that the pressure agglomeration method described to compact hop cones is more efficient than pelletizing process which is typically characterized by specific energy values ranging from 19 to 90 kJ kg−1.
2018
Istituto per le Macchine Agricole e Movimento Terra - IMAMOTER - Sede Ferrara
Humulus lupulus L
hydraulic press
compressive pressure
durability
bulk density
specific compression energy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact