We experimentally investigate the feasibility of a bolometric device based on exciton-polaritons. Initial measurements presented in this work show that heating - via thermal expansion and bandgap renormalization - modifies the exciton-polariton propagation wavevector making exciton-polaritons propagation remarkably sensitive to thermal variations. By theoretical simulations we predict that using a single layer graphene absorbing layer, a THz bolometric sensor can be realized by a simple exciton-polariton ring interferometer device. The predicted sensitivity is comparable to presently existing THz bolometric devices with the convenience of being a device that inherently produces an optical signal output.

An exciton-polariton bolometer for terahertz radiation detection

2018

Abstract

We experimentally investigate the feasibility of a bolometric device based on exciton-polaritons. Initial measurements presented in this work show that heating - via thermal expansion and bandgap renormalization - modifies the exciton-polariton propagation wavevector making exciton-polaritons propagation remarkably sensitive to thermal variations. By theoretical simulations we predict that using a single layer graphene absorbing layer, a THz bolometric sensor can be realized by a simple exciton-polariton ring interferometer device. The predicted sensitivity is comparable to presently existing THz bolometric devices with the convenience of being a device that inherently produces an optical signal output.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact